Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            null (Ed.)The kernels of operating systems such as Windows, Linux, and MacOS are vulnerable to control-flow hijacking. Defenses exist, but many require efficient intra-address-space isolation. Execute-only memory, for example, requires read protection on code segments, and shadow stacks require protection from buffer overwrites. Intel’s Protection Keys for Userspace (PKU) could, in principle, provide the intra-kernel isolation needed by such defenses, but, when used as designed, it applies only to user-mode application code. This paper presents an unconventional approach to memory pro- tection, allowing PKU to be used within the operating system kernel on existing Intel hardware, replacing the traditional user/supervisor isolation mechanism and, simultaneously, enabling efficient intra- kernel isolation. We call the resulting mechanism Protection Keys for Kernelspace (PKK). To demonstrate its utility and efficiency, we present a system we call IskiOS: a Linux variant featuring execute-only memory (XOM) and the first-ever race-free shadow stacks for x86-64. Experiments with the LMBench kernel microbenchmarks display a geometric mean overhead of about 11% for PKK and no additional overhead for XOM. IskiOS’s shadow stacks bring the total to 22%. For full applications, experiments with the system benchmarks of the Phoronix test suite display negligible overhead for PKK and XOM, and less than 5% geometric mean overhead for shadow stacks.more » « less
- 
            Memcached is a widely used key-value store. It is structured as a multithreaded user-level server, accessed over socket connections by a potentially distributed collection of clients. Because socket communication is so much more expensive than a single operation on a K-V store, much of the client library is devoted to batching of requests. Batching is not always feasible, however, and the cost of communication seems particularly unfortunate when—as is often the case—clients are co-located on a single machine with the server, and have access to the same physical memory. Fortunately, recent work on _protected libraries_ has shown that it is possible, on current Intel processors, to amplify access rights quickly when calling into a specially configured user-level library. Library instances in separate processes can then share data safely, even in the face of independent process failures. We have used protected libraries to implement a new version of memcached in which client threads execute the code of the server themselves, without the need to send messages. Compared to the original, our new version is both significantly simpler, containing 24% less code, and dramatically faster, with a 11–56× reduction in latency and a roughly 2× increase in throughput.more » « less
- 
            The proliferation of fast, dense, byte-addressable nonvolatile memory suggests that data might be kept in pointer-rich “in-memory” format across program runs and even process and system crashes. For full generality, such data requires dynamic memory allocation, and while the allocator could in principle be “rolled into” each data structure, it is desirableto make it a separate abstraction. Toward this end, we introduce _recoverability_, a correctness criterion for persistent allocators, together with a nonblocking allocator, _Ralloc,_ that satisfies this criterion. Ralloc is based on the _LRMalloc_ of Leite and Rocha, with four key innovations: First, we persist just enough information during normal operation to permit a garbage collection (GC) pass to correctly reconstruct the heap in the wake of a full-system crash. Second, we introduce the notion of _filter functions_, which identify the locations of pointers within persistent blocks to mitigate the limitations of conservative GC. Third, we reorganize the layout of the heap to facilitate the incremental allocation of physical space. Fourth, we employ position-independent (offset-based) pointers to allow persistent regions to be mapped at an arbitrary address. Experiments show Ralloc to be performance-competitive with both _Makalu_, the state-of-the-art lock-based persistent allocator, and such transient allocators as LRMalloc and JEMalloc. In particular, reliance on GC and offline metadata reconstruction allows Ralloc to pay almost nothing for persistence during normal operation.more » « less
- 
            The proliferation of fast, dense, byte-addressable nonvolatile memory suggests the possibility of keeping data in pointer-rich “in-memory” format across program runs and even crashes. For full generality, such data requires dynamic memory allocation. Toward this end, we introduce _recoverability_, a correctness criterion for persistent allocators, together with a nonblocking allocator, _Ralloc_, that satisfies this criterion. Ralloc is based on _LRMalloc_, with three key innovations. First, we persist just enough information during normal operation to permit reconstruction of the heap after a full-system crash. Our reconstruction mechanism performs garbage collection (GC) to identify and remedy any failure-induced memory leaks. Second, in support of GC, we introduce the notion of _filter functions_, which identify the locations of pointers within persistent blocks. Third, to allow persistent regions to be mapped at an arbitrary address, we employ the position-independent pointer representation of Chen et al., both in data and in allocator metadata. Experiments show that Ralloc provides scalable performance competitive to that of both _Makalu_, the state-of-the-art lock-based persistent allocator, and the best transient allocators (e.g.,_JEMalloc_).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
